√3 | π | |||
a)arc sin(− | )=− | |||
2 | 3 |
π | ||
b)arc cos(tan | )=0 | |
4 |
π | π | |||
c)arc tan(2sin | )= | |||
6 | 4 |
1 | π | |||
d)arc sin( | )= | |||
2 | 6 |
√3 | ||
1)6arc cot(− | )=4π | |
3 |
7 | π | |||
2)arc cos(sin( | π)= | |||
6 | 3 |
√2 | ||
3)tan(−4arc cos(− | ))=0 | |
2 |
7 | π | |||
4)arc sin(cot( | π))=− | |||
4 | 2 |
π | ||
I)arc sin(sin2(12o)+cos2(12o))= | ||
2 |
√3 | √3 | 7π | 4π | |||||
II)2arc cos(− | )−3arc tan | +arc sin(sin( | )= | |||||
2 | 3 | 6 | 3 |
1 | π | π | ||||
III)arc sin1−2arc cot(−√3)+arc cos | +arc sin(cos | )=− | ||||
2 | 6 | 2 |
1 | 1 | √2 | π | |||||
IV) | arc tan(−1)+arc sin(− | )+arc cos | =− | |||||
2 | 2 | 2 | 24 |
5π | π | 5π | π | π | ||||||
II)...=2* | +3* | +arc sinU{1]{2}= | − | + | =.. | |||||
6 | 6 | 3 | 2 | 6 |
√3 | √3 | π | π | |||||
2arccos(− | ) = 2arccos( | ) = 2* | = | |||||
2 | 2 | 6 | 3 |
√3 | √3 | 5 | ||||
2arccos(− | ) = 2[π − arccos( | )] = 2* | π | |||
2 | 2 | 6 |
√3 | π | |||
arctg | = | |||
3 | 6 |
7 | π | π | 1 | |||||
sin | π = sin(π + | ) = −sin | = − | |||||
6 | 6 | 6 | 2 |
7 | 1 | 1 | π | |||||
arcsin(sin( | π)) = arcsin(− | ) = − arcsin | = − | |||||
6 | 2 | 2 | 6 |
5 | π | π | ||||
2* | π − 3* | − | = π | |||
6 | 6 | 6 |
1 | 1 | 1 | π | ||||
arctg(−1) = − | arctg1 = − | * | |||||
2 | 2 | 2 | 4 |
π | ||
arcsin(−1/2) = −arcsin(1/2) = − | ||
6 |
√2 | π | |||
arccos( | ) = | |||
2 | 4 |
π | π | π | π | |||||
... = − | − | + | = | |||||
8 | 6 | 4 | 24 |
π | ||
sorry.... dobrze: = − | ||
24 |
π | ||
J a nie − | ? | |
24 |