1 | ||
f'(x)= | (arcsin(tan2x))' = | |
1+[arcsin(tan2x)]2 |
1 | 1 | |||
= | (tan2x)'= | |||
1+[arcsin(tan2x)]2 | √1−tan4x |
1 | 1 | 1 | ||||
= | 2tanx | |||||
1+[arcsin(tan2x)]2 | √1−tan4x | cos2x |
1 | ||
...=cos(rcos3(lnr))*eln(r)*cos3(lnr)* | cos2(lnr)[cos(lnr)−3ln(r)*sin(lnr)] | |
r |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |