n sin n! | ||
lim n→∞ | ||
n2 + 2 |
−n | n sin n! | n | |||
≤ | ≤ | ||||
n2 + 2 | n2 + 2 | n2 + 2 |
−n | ||
lim n→∞ | =0 | |
n2 + 2 |
n | ||
lim n→∞ | =0 | |
n2 + 2 |
n sin n! | ||
więc na mocy tw o 3 ciągach: lim n→∞ | =0 | |
n2 + 2 |
n | ||
|sin(n!)|≤1 , z granica | =0 gdy n→∞ | |
n2+2 |
n | ||
zatem granica | sin(n!)=0 gdy n→∞ | |
n2+1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |