| n+1 | ||
an=([ | ]+1)(−1)n+1, gdzie [x] oznacza część całkowitą liczby x. Łatwo udowodnić | |
| 2 |
| 1 | 1 | |||
Mnie wyszło an= | (2n+7)(−1)n+ | |||
| 4 | 4 |
| x2 | ||
∑n=0∞anxn+2x−2=x2∑n=2∞an−2xn−2+ | ||
| 1+x |
| x2 | ||
∑n=0∞anxn+2x−2=x2∑n=0∞anxn+ | ||
| 1+x |
| x2 | ||
A(x)+2x−2=x2A(x)+ | ||
| 1+x |
| x2 | ||
A(x)(1−x2)= | +2(1−x) | |
| 1+x |
| x2+2(1−x2) | ||
A(x)(1−x2)= | ||
| 1+x |
| 2−x2 | ||
A(x)= | ||
| (1+x)2(1−x) |
| A | B | C | 2−x2 | ||||
+ | + | = | |||||
| 1+x | (1+x)2 | 1−x | (1+x)2(1−x) |
| 1 | ||
C= | ||
| 4 |
| 1 | ||
B=2C= | ||
| 2 |
| 5 | ||
A=1+C= | ||
| 4 |
| 5 | 1 | 1 | 1 | 1 | 1 | 2−x2 | ||||
+ | + | = | ||||||||
| 4 | 1+x | 2 | (1+x)2 | 4 | 1−x | (1+x)2(1−x) |
| d | |
(∑n=0∞(−1)nxn)=∑n=0∞n(−1)nxn−1 | |
| dx |
| d | 1 | 1 | |||
( | )=− | ||||
| dx | 1+x | (1+x)2 |
| 1 | ||
∑n=0∞(n+1)(−1)nxn= | ||
| (1+x)2 |
| 2−x2 | 5 | 1 | |||
=∑n=0∞ | (−1)nxn+∑n=0∞ | (n+1)(−1)n+ | |||
| (1+x)2(1−x) | 4 | 2 |
| 1 | ||
∑n=0∞ | xn | |
| 4 |
| 5 | 1 | 1 | ||||
an= | (−1)n+ | (n+1)(−1)n+ | ||||
| 4 | 2 | 4 |
| 1 | 1 | |||
an= | (2n+2+5)(−1)n+ | |||
| 4 | 4 |
| 1 | 1 | |||
an= | (2n+7)(−1)n+ | |||
| 4 | 4 |