| dF | ||
Potem liczysz | i przyrównujesz do: x − 2y | |
| dy |
| 1 | ||
F(x,y) = | x3 + yx + φ(y) | |
| 3 |
| dF | |
= x + φ'(y) | |
| dy |
| 1 | ||
x + φ'(y) = x − 2y ⇔ φ'(y) = −2y ⇔ φ(y) = −2* | y2 = − y2 | |
| 2 |
| 1 | ||
ostatecznie: F(x,y) = | x3 + yx − y2 + C ..... koniec zadnia. | |
| 3 |
| dy | ||
2(x2+y)+(x−2y)*2 | ||
| dx |
| 4 | ||
u2= | x3+x2+C | |
| 3 |
| 4 | ||
(x−2y)2= | x3+x2+C | |
| 3 |
| 4 | ||
x2−4xy+4y2− | x3−x2=C | |
| 3 |
| 4 | ||
−4xy+4y2− | x3=C | |
| 3 |
| 1 | |
x3+xy−y2=C1 | |
| 3 |
nie spicie