| ∂f | 1 | ||
= | |||
| ∂x | 1 + x + y |
| ∂2f | 1 | ||
= − | |||
| ∂x2 | (1 + x + y)2 |
| ∂3f | 2 | ||
= | |||
| ∂x3 | (1 + x + y)3 |
| ∂nf | (n−1)! | ||
= (−1)n+1 | |||
| ∂xn | (1 + x + y)n |
| ∂nf | (n−1)! | ||
= (−1)n+1 | |||
| ∂yn | (1 + x + y)n |
| ∂nf | (n−1)! | ||
= (−1)n+1 | , k + m = n | ||
| ∂yk∂xm | (1 + x + y)n |
| 1 | ||
f(x,y) = ln(1 + x + y) = ln(1 + x0 + y0) + | (x − x0) + | |
| 1 + x0 + y0 |
| 1 | 1 | ||
(y − y0) − | (x − x0)2 − | ||
| 1 + x0 + y0 | 2!(1 + x0 + y0)2 |
| 1 | 1 | ||
(y − y0)2 − | (x − x0)(y − y0) + ... | ||
| 2!(1 + x0 + y0)2 | 2!(1 + x0 + y0)2 |
| (n−1)! | ||
... (−1)n+1 | (x − x0)n + | |
| n!(1 + x0 + y0)n |
| (n−1)! | ||
(−1)n+1 | (x − y0)n + Rn | |
| n!(1 + x0 + y0)n |