| f(x + h) − f(x) | ||
f'(x) = lim | ||
| h |
| √5 − (x+h)2 − √5 − x2 | ||
f'(x) = lim | = | |
| h |
| √5 − (x+h)2 − √5 − x2 | √5−(x+h)2+√5−x2 | |||
lim | * | |||
| h | {√5−(x+h)2+√5−x2} |
| 5 − x2 − 2*x*h − h2 − 5 + x2 | ||
= lim | = | |
| h*(√5 − (x + h)2 + √5 − x2) |
| −2*x | ||
lim | = | |
| √5 − (x + h)2 + √5 − x2 |
| −x | ||
f'(x) = | ||
| √5− x2 |
| f(x)+h)−f(x0) | ||
lim h→0 | = | |
| h |
| √5−(1+h)2−√5−1 | ||
=lim h→0 | = | |
| h |
| √5−1−2h−h2−2 | ||
=lim h→0 | =........ poradzisz sobie z granicą? | |
| h |