Rozwiazac równanie w zbiorze liczb zespolonych C (wynik podac w postaci algebrai
dave: z3 = (1 + i) / (1 − i)
jak dobrze zacząłem to wyznaczyłem ze z3 = i
28 cze 18:45
Mila:
Dobrze.
z3=i⇔
z3=−i3
z3+i3=0
(z+i)*(z2−iz+i2)=0
z=−i lub z2−iz−1=0
rozwiąż równanie kwadratowe.
28 cze 18:55
Mariusz: | √2 | | π | | π | | π | | π | |
z3= |
| (cos( |
| −(− |
| ))+isin( |
| −(− |
| ))) |
| √2 | | 4 | | 4 | | 4 | | 4 | |
| π | | 2kπ | | π | | 2kπ | |
z=cos( |
| + |
| )+isin( |
| + |
| ) |
| 6 | | 3 | | 6 | | 3 | |
| π | | π | | √3 | | 1 | |
z1=cos( |
| )+isin( |
| )= |
| + |
| i |
| 6 | | 6 | | 2 | | 2 | |
| 5π | | 5π | | √3 | | 1 | |
z2=cos( |
| )+isin( |
| )=− |
| + |
| i |
| 6 | | 6 | | 2 | | 2 | |
| 9π | | 9π | |
z3=cos( |
| )+isin( |
| )=−i |
| 6 | | 6 | |
29 cze 07:28