| 1 | 1 | 1 | 1 | 13 | ||||||
+ | + | +... | > | |||||||
| n+1 | n+2 | n+3 | n+n | 24 |
?
| 1 | ||
a1= | ||
| n+1 |
| 1 | ||
ak+1=ak+ | ||
| n+k |
| 1 | 1 | ||
+ | = 1/3 + 1/4 =7/12 ![]() | ||
| 2+1 | 2+2 |
| 1 | 1 | 1−2 | 1 | |||||
an+1 − an = | − | dobrze to = | = − | |||||
| 2(n+1) | n+1 | 2(n+1) | 2(n+1) |

!
jeżeli maxymalny wyraz jest dla n = 2 a on maleje <=> nie moze byc większy <=> wykazalismy
?
| 1 | 1 | 7 | ||||
a2= | + | = | ||||
| 3 | 4 | 12 |
| 1 | 1 | 1 | 9 | 1 | 27+10 | 37 | ||||||||
a3= | + | + | = | + | = | = | ||||||||
| 4 | 5 | 6 | 20 | 6 | 60 | 60 |
| 1 | 1 | 1 | 1 | 11 | 1 | 1 | 107 | 1 | ||||||||||
a4= | + | + | + | = | + | + | = | + | ||||||||||
| 5 | 6 | 7 | 8 | 30 | 7 | 8 | 210 | 8 |
| 107 | 1 | 428 | 105 | 533 | ||||||
a4= | + | = | + | = | ||||||
| 210 | 8 | 840 | 840 | 840 |
| 7 | 37 | 533 | |||
, | , | ||||
| 12 | 60 | 840 |
| 1 | 1 | 1 | 1 | 1 | 1 | 13 | 1 | 1 | |||||||||
+ | + | +... | + | + | > | + | + | ||||||||||
| n+1 | n+2 | n+3 | 2n | 2n+1 | 2n+2 | 24 | 2n+1 | 2n+2 |
| 1 | 1 | 1 | 1 | 1 | 13 | 1 | 1 | 1 | |||||||||
+ | +... | + | + | > | + | + | − | ||||||||||
| n+2 | n+3 | 2n | 2n+1 | 2n+2 | 24 | 2n+1 | 2n+2 | n+1 |
| 1 | 1 | 1 | 1 | 1 | |||||
+ | +... | + | + | > | |||||
| n+2 | n+3 | 2n | 2n+1 | 2n+2 |
| 13 | (2n+2)(n+1)+(2n+1)(n+1)−(2n+1)(2n+2) | |||
+ | ||||
| 24 | (2n+1)(2n+2)(n+1) |
| 1 | 1 | 1 | 1 | 1 | |||||
+ | +... | + | + | > | |||||
| n+2 | n+3 | 2n | 2n+1 | 2n+2 |
| 13 | (2n2+4n+1)+(2n2+3n+1)−(4n2+6n+2) | |||
> | + | |||
| 24 | (2n+1)(2n+2)(n+1) |
| 1 | 1 | 1 | 1 | 1 | 13 | n | |||||||
+ | +... | + | + | > | + | ||||||||
| n+2 | n+3 | 2n | 2n+1 | 2n+2 | 24 | (2n+1)(2n+2)(n+1) |
| 13 | ||
> | ||
| 24 |
| 1 | 1 | 1 | ||||
możesz też obliczyć granice z | + | +...+ | przy n→∞ (będzie to ln2) | |||
| n+1 | n+2 | n+n |
| 13 | ||
i wystarczy pokazać że ln2> | ||
| 24 |