| 1 | ||
dx = | dt = sec2tdt | |
| cos2t |
| dt | dt | sec2t*sint | 1 | |||||
∫ | = ∫ | = ∫ sec(−3)tdt = | + | ∫sectdt − dalej | ||||
| sect*sec2t | sec3t | 2 | 2 |
| t2−1 | ||
x= | ||
| 2t |
| 2t*2t−2(t2−1) | ||
dx= | dt | |
| 4t2 |
| t2+1 | ||
dx= | dt | |
| 2t2 |
| 2t2−(t2−1) | t2+1 | |||
t−x= | = | |||
| 2t | 2t |
| 4t2 | 2t | t2+1 | ||
∫ | dt | |||
| (t2−1)2 | t2+1 | 2t2 |
| 4t | 2 | |||
∫ | dt=− | +C | ||
| (t2−1)2 | t2−1 |
| √1+x2 |
| ||||||||
= | |||||||||
| x |
|
| √1+x2 | t2+1 | ||
= | |||
| x | t2−1 |
| √1+x2 | t2−1+2 | ||
= | |||
| x | t2−1 |
| √1+x2 | 2 | ||
=1+ | |||
| x | t2−1 |
| √1+x2 | 2 | |||
− | =−1− | |||
| x | t2−1 |
| 2 | √1+x2 | |||
− | =− | +1 | ||
| t2−1 | x |
| 1 | √1+x2 | |||
∫ | dx=− | +C | ||
| x2√1+x2 | x |