Trygonometria
Ja123: Sinx +sin3x +sin5x=0
Sin5x + sin3x −sin4x=0
Pomoże ktos zrozumieć?
15 cze 21:15
Eta:
1/ sinx+sin(5x)= 2 sin(3x)*cos(2x)
| 1 | |
sin(3x)(2cos(2x) +1)=0 ⇒ sin(3x)=0 lub cos(2x)=− |
| ⇒ ...... |
| 2 | |
2/
sin(5x)+sin(3x)= 2sin4x*cosx
sin(5x)+sin(3x)−sin(4x)=0
| 1 | |
sin(4x)(2cosx−1)=0 ⇒ sin(4x)=0 v cosx= |
| ⇒ ... dokończ |
| 2 | |
15 cze 21:25
Eta:
Żyjesz?
15 cze 21:56
Ja123: Tak, żyje. Uczę sie cały czas do jutrzejszego sprawdzianu i nawet zapomniałem zajrzeć
15 cze 22:09
Ja123: Tylko wlasnie mam problem z tym, ze tam są 3 liczby sinx + sin3x + sin5x a w twoich
obliczeniach nie widzę uwzględnionego sin3x. Na dodawanie 2 sin jest wzór, ale wlasnie mam
problem z dodaniem 3
15 cze 22:12
Eta:
sin(5x)+sinx= 2 sin(3x)*cos(2x)
równanie : sin(5x)+sinx+sin(3x)= 2sin(3x)*cos(2x)+ sin(3x) = sin(3x) (2cos(2x)+1)=0
otrzymujesz równanie: sin(3x)(2cos(2x)+1)=0
15 cze 22:19