dy | 3x | |||
a) | = | |||
dx | y |
dy | ||
c) | =2√ylnx | |
dx |
dy | ||
1) | = 3xdx
| |
y |
3 | ||
całkujemy: lnIyI = | x2 + C1 ⇔ y = e3/2x+C1 ⇔ y = C*e3/2x | |
2 |
1 | 3 | |||
y2 = | x2 + C1 ⇔ y2 = 3x2 + C ⇔ y = √3x2 + C | |||
2 | 2 |
dy | ||
∫ | =∫lnxdx x>0 | |
2√y |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |