√y | ||
y'= | ||
x+1 |
1 | ||
f(x)= | ||
x+1 |
1 | ||
całka z | = całka z f(x) +c | |
h(y) |
1 | ||
∫ | dy = ∫f(x)dx +c | |
√h(y) |
1 | ||
∫ | = 2√y+1 | |
√y |
1 | ||
∫ | = ln|x+1| | |
√x+1 |
dy | |
= (x+1)dx
| |
√y |
dy | dx | ||
= | |||
√y | x + 1 |
1 | ||
2√y = lnIx+1I + C1 ⇔ 2√y = ln[C*(x+1)] ⇔ √y = | ln[C*(x+1)] ⇔
| |
2 |
1 | ||
⇔ y = | ln2[C*(x+1)] .... i teraz jest dobrze | |
4 |