| √y | ||
y'= | ||
| x+1 |
| 1 | ||
f(x)= | ||
| x+1 |
| 1 | ||
całka z | = całka z f(x) +c | |
| h(y) |
| 1 | ||
∫ | dy = ∫f(x)dx +c | |
| √h(y) |
| 1 | ||
∫ | = 2√y+1 | |
| √y |
| 1 | ||
∫ | = ln|x+1| | |
| √x+1 |
| dy | |
= (x+1)dx
| |
| √y |
| dy | dx | ||
= | |||
| √y | x + 1 |
| 1 | ||
2√y = lnIx+1I + C1 ⇔ 2√y = ln[C*(x+1)] ⇔ √y = | ln[C*(x+1)] ⇔
| |
| 2 |
| 1 | ||
⇔ y = | ln2[C*(x+1)] .... i teraz jest dobrze ![]() | |
| 4 |