| dy | |
−2xy=x−x3 | |
| dx |
| dy | |
=2xy | |
| dx |
| dy | |
=2xdx | |
| y |
| dy | ||
∫ | =2∫xdx | |
| y |
| dy | |
=c1`(x)*ex2+c1(x)*ex2*2x | |
| dx |
| x−x3 | ||
c1`(x)= | i teraz to z całkować | |
| ex2 |
| x−x3 | ||
∫ | , rozbijam na dwie całki | |
| ex2 |
| x | ||
∫ | ||
| ex2 |
| 1 | ||
podstawiam: t=x2 , dt= 2xdx , | dt=xdx | |
| 2 |
| 1 | dt | ||
∫ | |||
| 2 | et |
| 1 | |
∫e−t*dt | |
| 2 |
| x3 | ||
−∫ | jak podstawie t za x2 to u góry mi te x3 nie zniknie nie mam pomysłu na to | |
| ex2 |