Kwadrat = K = { (x,y) ∊ R2 : x ∊ [0,2] ∧ y ∊ [0,1] }
| ⎧ | 12 gdy (x,y) ∊ K | ||
| f(x,y) = | ⎨ | ||
| ⎩ | 0 gdy (x,y) ∉ K |
| 1 | ||
E(X + XY) = ∫01∫02(x + xy) * | dxdy = | |
| 2 |
| 1 | x2 | ||
* ∫01 | (1 + y)|02dy = | ||
| 2 | 2 |
| 1 | y2 | 3 | |||
* ∫01 2(1 + y)dy = (y + | )|01 = | ||||
| 2 | 2 | 2 |
| 1 | ||
E(X + XY)2 = ∫01∫02x2(1 + y)2 * | dxdy = | |
| 2 |
| 1 | x3 | ||
∫01 | (1 + y)2|02dy = | ||
| 2 | 3 |
| 1 | 8 | ||
∫01 | (1 + y)2dy = | ||
| 2 | 3 |
| 4 | (1 + y)3 | 4 | 8 | 32 | |||||
* | |01 = | * | = | ||||||
| 3 | 3 | 3 | 3 | 3 |
| 32 | 9 | 128 − 27 | 121 | |||||
Var(X + XY) = E(X + XY)2 − (E(X + XY))2 = | − | = | = | |||||
| 3 | 4 | 4 | 4 |
?