| du | |
=dx | |
| √u |
| x+C | ||
u=( | )2 | |
| 2 |
| x+C | ||
2x+y=( | )2 | |
| 2 |
| x+C | ||
y=( | )2−2x | |
| 2 |
| y | ||
y'+ | =8 | |
| x |
| y | ||
y'+ | =0 | |
| x |
| y | ||
y'=− | ||
| x |
| dy | dx | ||
=− | |||
| y | x |
| 1 | ||
y=C | ||
| x |
| 1 | ||
y(x)=C(x) | ||
| x |
| 1 | 1 | 1 | ||||
C'(x) | −C(x) | +C(x) | =8 | |||
| x | x2 | x2 |
| 1 | ||
C'(x) | =8 | |
| x |
| 4x2+C1 | ||
y= | ||
| x |
| C1 | ||
y=4x+ | ||
| x |
| dy | |
=−6dx | |
| y |
| 1 | 1 | |||
C(x)= | (x2+1)e6x− | ∫xe6xdx | ||
| 6 | 3 |
| 1 | 1 | 1 | 1 | |||||
C(x)= | (x2+1)e6x− | ( | xe6x− | ∫e6xdx) | ||||
| 6 | 3 | 6 | 6 |
| 1 | 1 | 1 | 1 | |||||
C(x)= | (x2+1)e6x− | ( | xe6x− | e6x)+C1 | ||||
| 6 | 3 | 6 | 36 |
| 1 | 1 | 1 | ||||
C(x)= | (x2+1)e6x− | xe6x+ | e6x+C1 | |||
| 6 | 18 | 108 |
| 1 | ||
C(x)= | (18x2−6x+19)e6x+C1 | |
| 108 |
| 1 | ||
y= | (18x2−6x+19)+C1e−6x | |
| 108 |