1−sinx | cosx | |||
Udowodnić tożsamość | = | |||
cosx | 1+sinx |
1 − sinx | 1 + sinx | 1 − sin2x | ||||
L = | * | = | = | |||
cosx | 1 + sinx | cosx * (1 + sinx) |
cos2x | cosx | |||
= | = | = P | ||
cosx * (1 + sinx) | 1 + sinx |
cosx | cosx | cos2x | ||||
P = | * | = | = | |||
1 + sinx | cosx | (1 + sinx)cosx |
1−sin2x | (1 − sinx)(1 + sinx) | 1 − sinx | ||||
= | = | = | = L | |||
(1 + sinx)cosx | (1 + sinx)cosx | cosx |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |