| lnx | ||
f | *dx= jak to wyliczyć? | |
| x |
| 1 | ||
dt= | dx | |
| x |
| dt | ||
∫ | =ln|t|+C=ln|lnx|+C | |
| t |
| 1 | ||
ln2x+c | ||
| 2 |
| 1 | ||
lnx = t, | dx = dt | |
| x |
| 1 | 1 | |||
∫tdt = | + C = | ln2x + C | ||
| t2 | 2 |
| 1 | ||
∫t dt= | t2 + C ![]() | |
| 2 |
| 1 | 1 | |||
Złapałem chochlika, wpisałem | + C = | ln2x + C (lewa strona błędna) | ||
| t2 | 2 |
| 1 | 1 | |||
powinno być | t2 + C = | ln2x + C | ||
| 2 | 2 |