| x4 | ||
∫ | dx | |
| √x2 + 2x + 3 |
| t2−3 | ||
x= | ||
| 2t+2 |
| t2−3 | 2t2+2t−t2+3 | |||
t−x=t− | = | |||
| 2t+2 | 2t+2 |
| t2+2t+3 | ||
t−x= | ||
| 2t+2 |
| 2t(2t+2)−2(t2−3) | ||
dx= | dt | |
| (2t+2)2 |
| 2(t2+2t+3) | ||
dx= | dt | |
| (2t+2)2 |
| (t2−3)4 | 2t+2 | 2(t2+2t+3) | ||||
∫ | * | * | dt | |||
| (2t+2)4 | t2+2t+3 | (2t+2)2 |
| 1 | (t2−3)4 | ||
∫ | dt | ||
| 16 | (t+1)5 |
| 1 | t8−12t6+54t4−108t2+81 | ||
∫ | dt | ||
| 16 | (t+1)5 |