|CD|=d=2
| 1 | 1 | 1 | |||
*2*2sinα+ | *2*3*sinα= | *2*3*sin(2α)⇔ | |||
| 2 | 2 | 2 |
| 5 | ||
cosα= | ||
| 6 |
| 25 | ||
sin2α=1− | ||
| 36 |
| 11 | ||
sin2α= | ||
| 36 |
| √11 | ||
sinα= | ||
| 6 |
| 5 | √11 | |||
2*sinα*cosα=2* | * | ⇔ | ||
| 6 | 6 |
| 5√11 | ||
sin(2α)= | ||
| 18 |
| 1 | 5√11 | |||
PΔABC= | *2*3*sin(2α)=3* | |||
| 2 | 18 |
| 15√11 | ||
PΔABC= | ||
| 18 |
Moja propozycja rozwiązania (bez trygonometrii, tylko Pitagoras):
| 2 | 3 | ||
= | ⇒ b = 3a | ||
| 2a | b |
| 1 | 1 | 11 | ||||
15a2 = 5 ⇒ a2 = | i h2 = 4 − | = | ||||
| 3 | 3 | 3 |
| 1 | 25 | 25 | 1 | 11 | ||||||
Pole trójkąta P: P2 = ( | *5a*h)2 = | a2h2 = | * | * | ||||||
| 2 | 4 | 4 | 3 | 3 |
| 5√11 | ||
P = | ||
| 2*3 |
Środkowa dzieli trójkąt na dwa trójkąty o równych polach
to P(ABC)= 2P(ADC)
4|CD|2= 2*42+2*62−4a2 ⇒ 9=8+18−a2⇒ a2=17
| 16+9−17 | 1 | 1 | 2√2 | |||||
cosα= | = | to sinα=√1− | = | |||||
| 2*4*3 | 3 | 9 | 3 |