| 1 | 1 | |||
2(y+ | )3−(y+ | )2−162=0 | ||
| 6 | 6 |
| 1 | 1 | 1 | 1 | 1 | ||||||
2(y3+ | y2+ | y+ | )−(y2+ | y+ | )−162=0 | |||||
| 2 | 12 | 216 | 3 | 36 |
| 1 | 1 | 1 | 3 | |||||
2y3+y2+ | y+ | −y2− | y− | −162=0 | ||||
| 6 | 108 | 3 | 108 |
| 1 | 17494 | |||
2y3− | y+ | =0 | ||
| 6 | 108 |
| 1 | 17494 | |||
y3− | y+ | =0 | ||
| 12 | 216 |
| 1 | 17494 | |||
(u+v)3− | (u+v)+ | =0 | ||
| 12 | 216 |
| 1 | 17494 | |||
u3+3u2v+3uv2+v3− | (u+v)+ | =0 | ||
| 12 | 216 |
| 17494 | 1 | |||
u3+v3+ | +3(u+v)(uv− | )=0 | ||
| 216 | 36 |
| 17494 | ||
u3+v3+ | =0 | |
| 216 |
| 1 | ||
(u+v)(uv− | )=0 | |
| 36 |
| 17494 | ||
u3+v3=− | ||
| 216 |
| 1 | ||
uv= | ||
| 36 |
| 17494 | ||
u3+v3=− | ||
| 216 |
| 1 | ||
u3v3= | ||
| 46656 |
| 17494 | 1 | |||
t2+ | t+ | =0 | ||
| 216 | 46656 |
| 8747 | 76510008 | |||
(t+ | )2− | |||
| 216 | 46656 |
| 8747−√76510008 | 8747+√76510008 | |||
(t+ | )(t+ | ) | ||
| 216 | 216 |
| 1 | 1 | |||
y= | (−8747−√76510008)(1/3)+ | (−8747+√76510008)(1/3) | ||
| 6 | 6 |
| 1 | 1 | 1 | ||||
x= | (−8747−√76510008)(1/3)+ | (−8747+√76510008)(1/3)+ | ||||
| 6 | 6 | 6 |
| 1 | ||
W( | )≠0 | |
| 2 |
| 9 | 729 | 81 | 729 | 81 | ||||||
W( | )=2* | − | −162= | − | −162=0 | |||||
| 2 | 8 | 4 | 4 | 4 |
| 9 | ||
x= | ||
| 2 |
Każdy uczeń liceum powinien umieć narysować przybliżony przebieg funkcji
h(x) = x2(2x−1).
| 1 | ||
Wielomian h ma jeden pierwiastek podwójny x0=0 i drugi pierwiastek x1 = | . | |
| 2 |
| 9 | ||
[4, 5] liczby | : | |
| 2 |
| 9 | 9 | 81 | ||||
( | )2(2· | − 1) = | ·8 = 162. | |||
| 2 | 2 | 4 |