| x | ||
y = | , 0<x<2π | |
| 2 |
| (−1)(n−1) | ||
∑ | ||
| 2n−1 |
| 1 | ||
bn = − | tyle mi wyszlo, dobry wynik ? ![]() | |
| n |
| π | 1 | |||
f(x) = | − | ∑ sin(nx) | ||
| 2 | n |
| π | ||
dla n = 2k zostanie mi samo | ? ![]() | |
| 2 |
| π | (−1)(k−1) | |||
czyli mam f(x) = | + ∑ | dla n = 2k −1 (nieparzystych) | ||
| 2 | (2k−1) |
| π | ||
czyli suma tego szeregu dla n parzystych to | = f(π) | |
| 2 |
| π | (−1)(k−1) | |||
f(π) = | + ∑ | |||
| 2 | (2k−1) |
| π | π | (−1)(k−1) | |||
= | + ∑ | ||||
| 2 | 2 | (2k−1) |
| (−1)(k−1) | ||
0 = ∑ | ||
| (2k−1) |