| dy | 1 | ||
+ xy = xy3 / * | |||
| dx | y3 |
| dy | x | ||
+ | − x = 0 | ||
| y3dx | y2 |
| 1 | −2 | |||
z = | ⇒ z' = | y' | ||
| y2 | y3 |
| dz | ||
− | + xz − x = 0 | |
| 2dx |
| dz | |
= (z − 1)x | |
| 2dx |
| dz | ||
∫ | = ∫ 2xdx | |
| z − 1 |
| 1 | ||
ln| | − 1| = x2 + C | |
| y2 |
| 1 | |
− 1 = ex2 + C | |
| y2 |
| 1 | |
= ex2 + C + 1 | |
| y2 |
| 1 | ||
y2 = | ||
| ex2 + C + 1 |
| 1 | ||
y = ±( | )1/2 | |
| ex2 + C + 1 |