t dydt − 4y = t2 √y
| dy | 4 | |||
⇔ | − | y =t*y1/2 i dzielimy obuistronnie przez: y1/2 | ||
| dt | t |
| dy | 4 | |||
⇔ y−1/2 | − | y−1/2 = t .... | ||
| dt | t |
| du | 1 | dy | ||||
podstawienie: u = y1/2 oraz | = | y−1/2 | ||||
| dt | 2 | dx |
| du | 4 | |||
...2 | − | *u = t | ||
| dt | t |
| dy | du | |||
w trzecim stosujemy podstawienie: u = y1/2 stąd: y−1/2 | = 2 | |||
| dt | dt |
| du | 1 | dy | ||||
u = y1/2 wtedy: | = | y−1/2 | ... ( niechcący napisałem dx ) | |||
| dt | 2 | dt |
| du | dy | |||
⇔ 2 | = y−1/2 | ... i podstawiasz do równania: 12:17 .. druga linijka | ||
| dt | dt |
| du | 4 | du | 2 | |||||
najpierw równanie jednorodne: 2 | − | *u = 0 ⇔ | = | dt | ||||
| dt | t | u | t |
| du | ||
teraz uzmienniamy stałą: u = C1(t)*t2 oraz: | = C1'(t)*t2 + 2t*C1(t) | |
| dt |
| 4 | ||
2*C1'(t)*t2 + 4t*C1(t) − | *C1(t)*t2 = t ⇔ 2*C1'(t)*t2 = t | |
| t |
| 1 | 1 | |||
⇔ C1'(t)*t2 = | t ⇔ C1'(t) = | |||
| 2 | 2t |
| 1 | ||
teraz całkujem: C1(t) = | lnItI + C2 , | |
| 2 |
| 1 | ||
zatem : u = C1(t)*t2 = ( | lnItI + C2)*t2 | |
| 2 |
| 1 | 1 | |||
y1/2 = ( | lnItI + C2)*t2 ⇔ y = ( | lnItI + C2)*t4 ... rozwiązanie | ||
| 2 | 2 |