√n(n+2) −n | ||
an = | ||
n+2 − √n(n+2) |
√n*(n +2) − n | ||
an = | = | |
n + 2 − √n*(n +2) |
√n2 + 2 n − n | ||
= | = | |
n + 2 − √n2 + 2 n |
| |||||||||||
= | = | ||||||||||
|
n*( n +2 + √n2 + 2n | ||
= | = | |
( n +2)*(√n2 + 2n + n) |
1 + 2n + √ 1 + 2n | ||
= | ||
( 1 + 2n)*(√1 + 2n + 1) |
1 + 0 + 1 | ||
lim an = | = 1 | |
1*( 1 + 1) |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |