1 | ||
Znajdź wzór ogólny ciągu określonego rekurencyjnie: a1 =3 i an+1 = | ||
an |
1 | ||
a1 = 3, a2 = | ||
3 |
1 | |
(∑n=1∞an+2xn+2) = ∑n=1∞anxn | |
x2 |
1 | |
(∑n=3∞anxn) = ∑n=1∞anxn | |
x2 |
1 | ||
∑n=1∞anxn − 3x − | x2 = x2(∑n=1∞anxn) | |
3 |
1 | ||
(1−x2)A(x) = 3x + | x2 | |
3 |
| |||||||||||
A(x) = | |||||||||||
1−x2 |
| Ax | Bx | ||||||||||||
= | + | |||||||||||||
1−x2 | 1−x | 1+x |
1 | ||
3x + | x2 = Ax(1+x) + Bx(1−x) | |
3 |
1 | ||
3 + | x = A(1+x) + B(1−x) | |
3 |
1 | ||
3 + | x = (A+B) + (A − B)x | |
3 |
1 | ||
A−B = | ||
3 |
10 | ||
2A = | ||
3 |
5 | ||
A = | ||
3 |
4 | ||
B = | ||
3 |
5 | x | 4 | (−x) | |||||
A(x) = | * | − | * | |||||
3 | 1−x | 3 | 1−(−x) |
5 | 4 | |||
A(x) = | (∑n=1∞xn) − | *(∑n=1∞(−1)nxn) | ||
3 | 3 |
5 | 4 | |||
A(x) = ∑n=1∞( | − | (−1)n)xn | ||
3 | 3 |
5 | 4 | |||
an = | − | (−1)n | ||
3 | 3 |
⎧ | 3 dla nieparzystych n | ||
an = | ⎨ | ||
⎩ | 1/3 dla parzystych n |