| 1 | ||
Znajdź wzór ogólny ciągu określonego rekurencyjnie: a1 =3 i an+1 = | ||
| an |
| 1 | ||
a1 = 3, a2 = | ||
| 3 |
| 1 | |
(∑n=1∞an+2xn+2) = ∑n=1∞anxn | |
| x2 |
| 1 | |
(∑n=3∞anxn) = ∑n=1∞anxn | |
| x2 |
| 1 | ||
∑n=1∞anxn − 3x − | x2 = x2(∑n=1∞anxn) | |
| 3 |
| 1 | ||
(1−x2)A(x) = 3x + | x2 | |
| 3 |
| |||||||||||
A(x) = | |||||||||||
| 1−x2 |
| Ax | Bx | ||||||||||||
= | + | |||||||||||||
| 1−x2 | 1−x | 1+x |
| 1 | ||
3x + | x2 = Ax(1+x) + Bx(1−x) | |
| 3 |
| 1 | ||
3 + | x = A(1+x) + B(1−x) | |
| 3 |
| 1 | ||
3 + | x = (A+B) + (A − B)x | |
| 3 |
| 1 | ||
A−B = | ||
| 3 |
| 10 | ||
2A = | ||
| 3 |
| 5 | ||
A = | ||
| 3 |
| 4 | ||
B = | ||
| 3 |
| 5 | x | 4 | (−x) | |||||
A(x) = | * | − | * | |||||
| 3 | 1−x | 3 | 1−(−x) |
| 5 | 4 | |||
A(x) = | (∑n=1∞xn) − | *(∑n=1∞(−1)nxn) | ||
| 3 | 3 |
| 5 | 4 | |||
A(x) = ∑n=1∞( | − | (−1)n)xn | ||
| 3 | 3 |
| 5 | 4 | |||
an = | − | (−1)n | ||
| 3 | 3 |
| ⎧ | 3 dla nieparzystych n | ||
| an = | ⎨ | ||
| ⎩ | 1/3 dla parzystych n |