www
huhuhu: Uzasadnij, że 5log711 = 11log75
28 kwi 15:24
Dziadek Mróz:
a = e
ln(a)
| logc(b) | |
loga(b) = |
| |
| logc(a) | |
log
a(b
c) = c*log
a(b)
L = 5
log7(11) = e
ln(5log7(11)) = e
log7(11)ln(5) = e
ln(11)ln(5)/ln(7)
P = 11
log7(5) = e
ln(11log7(5)) = e
log7(5)ln(11) = e
ln(5)ln(11)/ln(7)
L = P
28 kwi 15:31
Bogdan:
Sprawdźmy tożsamość: alogbc = clogba
logarytmujemy obustronnie:
logb alogbc = logb clogba ⇒ logbc * logba = logba * logbc ⇒ L = P
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
W tym przypadku: 5log711 = 11log75, logarytmujemy obustronnie:
log7 5log711 = log711log75 ⇒ log711 * log75 = log75 * log711
L = P
28 kwi 16:08