|KM| | |CD| | |||
Wykaż, że | = | . | ||
|ML| | |AB| |
|AK| | |KM| | |KA| | |AM| | ||||
= | z podobieństwa trójkątów ΔAKM~ΔADC | = | i | ||||
|AD| | |DC| | |KD| | |MC| |
|CL| | |ML| | ||
= | |||
|CB| | |AB| |
|AK| | |CL| | 1 | |||
= | = | więc | |||
|AD| | |CB| | 2 |
|ML| | |KM| | ||
= | |||
|AB | |DC| |
|CD| | |KM| | ||
= | |||
|AB| | |ML |
|KM| | b | |DC| | 2b | b | |||||
= | i | = | = | ||||||
|ML| | a | |AB| | 2a | a |
|KM| | |DC| | |||
to : | = | |||
|ML| | |AB| |