a+b | a | |||
Udowodnij, że jeśli liczby a,b,c są dodatnie i a<b, to | > | |||
b+c | b |
b − a | b − a | |||
(0) | > | |||
b | b + c |
a | b − a | |||
1 − | > | |||
b | b + c |
a | b − a | |||
− | > | − 1 | ||
b | b + c |
a | a − b | |||
< | +1 | |||
b | b + c |
a | a + c | |||
(1) | < | . | ||
b | b + c |
a | a + b | |||
< | , | |||
b | b + c |
a+b | a | ||
− | >0 | ||
b+c | b |
b(a+b)−a(b+c) | |
>0 | |
b(b+c) |
ab+b2−ab−ac | |
>0 | |
b2+bc |
b2−ac | |
>0 | |
b2+bc |
a | a + c | a + b | ||||
< | < | |||||
b | b + c | b + c |
a | a+b | ||
< | |||
b | b+b |
a | a+b | ||
< | |||
b | 2b |
1 | 1 | |||
a<b ⇒ | > | / *c | ||
a | b |
c | c | c | c | ||||
> | /+1 ⇒ | +1> | +1 | ||||
a | b | a | b |
c+a | c+b | a | ||||
> | /* | |||||
a | b | c+b |
c+a | a | ||
> | |||
c+b | b |
a+b | a | |||
> | ||||
b+c | b |