1 | ||
∫ | dx ? | |
x2+√x |
1 | 2tdt | dt | ||||
∫ | dx=∫ | =2∫ | ||||
x2+√x | t4+1 | t3+1 |
dt | ||
2∫ | ||
(t+1)(t2−t+1) |
1 | A | Bt+C | |||
= | + | ||||
(t+1)(t2−t+1) | t+1 | t2−t+1 |
dt | t | dt | ||||
23∫ | −23∫ | dt+43∫ | = | |||
t+1 | t2−t+1 | t2−t+1 |
2t−1+1 | dt | |||
23ln(t+1)−13∫ | dt+43∫ | = | ||
t2−t+1 | t2−t+1 |
2t−1 | dt | |||
23ln(t+1)−13∫ | dt+∫ | = | ||
t2−t+1 | t2−t+1 |
dt | ||
23ln(t+1)−13ln(t2−t+1)+∫ | ||
t2−t+1 |
√3 | ||
t−12= | u | |
2 |
√3 | ||
dt= | du | |
2 |
2 | ||
u= | (t−12) ma postać | |
√3 |
√32du | 2√3 | du | ||||
∫ | = | ∫ | ||||
34u2+34 | 3 | u2+1 |
2√3 | 2√3 | 2t−1 | |||
arctgu= | arctg( | ) | |||
3 | 3 | √3 |
2√3 | 2t−1 | |||
23ln(t+1)−13ln(t2−t+1)+ | arctg( | ) | ||
3 | √3 |
2√3 | 2√x−1 | |||
lim[23ln(√x+1)−13ln(x−√x+1)+ | arctg( | )]1v= | ||
3 | √3 |
(√v+1)2 | 2√3 | 2√v−1 | √3 | |||||
=lim(13ln | + | arctg | )−13ln4− | π= | ||||
v−√v+1 | 3 | √3 | 9 |
(√v+1)3 | 2√3 | 2√v−1 | √3 | |||||
=lim(13ln | + | arctg | )−13ln4− | π= | ||||
√v3+1 | 3 | √3 | 9 |
2√3 | √3 | |||
=13ln1+ | π2−13ln4− | π=29π√3−13ln4 | ||
3 | 9 |