Nie chce wyjść mi wynik z odpowiedzi
Sprawdzicie?
Wyznacz an, wiedząc że ciąg nieskończony an spełnia warunki takie, że:
1o. an+2−an+1=n2
2o. an+2+2an+1=3−n2
Tworzę układ równań:
▯an+2−an+1=n2
▯an+2+2an+1=3−n2 //odejmuje stronami
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
▯an+2−an+2−an+1−2an+1=n2−(3−n2)
▯an+2=n2+an+1
▯3an+1=2n2−3
▯an+2=n2+an+1
▯3an+1=2n2−3 /:3
▯an+2=n2+an+1
| 2n2−3 | ||
▯an+1= | ||
| 3 |
| 2n2−3 | ||
▯an+2=n2+ | ||
| 3 |
| 2n2−3 | ||
▯an+1= | ||
| 3 |
| 5n2−3 | ||
▯an+2= | ||
| 3 |
| 5n2−3 | 2n2−3 | 5n2−3−(2n2−3) | ||||
▯ | − | = | =n2 | |||
| 3 | 3 | 3 |
| 2n2−3 | n2+3 | |||
▯= | −n2=− | |||
| 3 | 3 |
Poprawiam.
| 2n2−3 | ||
▯an+1=− | ||
| 3 |
| 2n2−3 | ||
▯an+1=− | ||
| 3 |
| 2n2−3 | ||
▯an+2=n2− | ||
| 3 |
| 2n2−3 | ||
▯an+1=− | ||
| 3 |
| n2+3 | ||
▯an+2= | ||
| 3 |
| n2+3 | 2n2−3 | |||
▯ | + | =r | ||
| 3 | 3 |
| 2n2−3 | ||
▯an=− | −r | |
| 3 |
| n2+3+2n2−3 | ||
▯ | =r | |
| 3 |
| 2n2−3 | ||
▯an=− | −r | |
| 3 |
| 2n2−3 | ||
▯an=− | −n2 | |
| 3 |
| 5n2−3 | ||
an=− | ![]() | |
| 3 |
| 3−3n2 | ||
an+1= | ||
| 3 |