| x3 | x((x2+4)−4) | |||
∫ | =∫ | |||
| (x2+4)2 | (x2+4)2 |
| 1 | ||
xdx= | dt | |
| 2 |
| 1 | t−4 | ||
∫ | dt | ||
| 2 | t2 |
| 1 | 1 | 1 | |||
∫ | dt−2∫ | dt | |||
| 2 | t | t2 |
| 1 | 2 | ||
ln{t}+ | |||
| 2 | t |
| 1 | 2 | |||
= | ln(x2+4)+ | +C | ||
| 2 | x2+4 |
| t2+6 | ||
x= | ||
| 2t |
| 2t2−t2−6 | t2−6 | |||
t−x= | = | |||
| 2t | 2t |
| 2t·2t−2(t2+6) | ||
dx= | dt | |
| 4t2 |
| t2−6 | ||
dx= | dt | |
| 2t2 |
| t2−6 | t2−6 | |||
∫ | · | dt | ||
| 2t | 2t2 |
| (t2−6) | ||
∫ | dt | |
| 4t3 |
| t4−12t2+36 | ||
∫ | dt | |
| 4t3 |
| 1 | 1 | 1 | |||
(∫tdt−12∫ | dt+36∫ | dt) | |||
| 4 | t | t3 |
| 1 | t2 | 1 | |||
( | −18 | −12ln(t))+C | |||
| 4 | 2 | t2 |
| 1 | t4−36 | ||
( | −6ln(t))+C | ||
| 2 | 4t2 |
| 1 | t2+6 | t2−6 | |||
( | · | −6ln(t))+C | |||
| 2 | 2t | 2t |
| 1 | ||
= | (x√x2−6−6ln(x+√x2−6))+C | |
| 2 |
| (ln(x))5 | ||
∫ | dx | |
| x |
| 1 | ||
dt= | dx | |
| x |
| t6 | ||
∫t5dt= | +C | |
| 6 |
| (ln(x))6 | ||
= | +C | |
| 6 |
| t2−4 | ||
x= | ||
| 2t |
| 2t2−t2+4 | t2+4 | |||
t−x= | = | |||
| 2t | 2t |
| 2t·2t−2(t2−4) | ||
dx= | dt | |
| 4t2 |
| t2+4 | ||
dx= | dt | |
| 2t2 |
| t2+4 | t2+4 | |||
∫ | · | dt= | ||
| 2t | 2t2 |
| 1 | (t2+4)2 | ||
∫ | dt | ||
| 4 | t3 |
| 1 | t4+8t2+16 | ||
∫ | dt= | ||
| 4 | t3 |
| 1 | 1 | 1 | |||
(∫tdt+8∫ | dt+16∫ | dt)= | |||
| 4 | t | t3 |
| 1 | t2 | 1 | |||
( | +8ln(t)−8 | )+C= | |||
| 4 | 2 | t2 |
| 1 | t4−16 | ||
( | +8ln(t))+C= | ||
| 4 | 2t2 |
| 1 | t4−16 | ||
( | +4ln(t))+C= | ||
| 2 | 4t2 |
| 1 | t4−16 | ||
( | +4ln(t))+C= | ||
| 2 | 4t2 |
| 1 | t2−4 | t2+4 | |||
( | · | +4ln(t))+C | |||
| 2 | 2t | 2t |
| 1 | |
(x√x2+4+4ln(x+√x2+4))+C | |
| 2 |