| 2 | 7 | |||
Wyznacz liczbę a > 1 , która spełnia równanie 2a2 + | = 7a + | |||
| a2 | a |
| 1 | 1 | |||
2(a2 + | ) = 7(a + | ) | ||
| a2 | a |
| 1 | 1 | |||
2[(a+ | )2 − 2] = 7(a + | ) | ||
| a | a |
| 1 | ||
a + | = t | |
| a |
| 1 | ||
t2 = − | ||
| 2 |
| 1 | ||
a + | = 4 | |
| a |
| 4−2√3 | ||
a1 = | < 1 | |
| 2 |
| 4+2√3 | ||
a2 = | = 2+√3 | |
| 2 |
| 1 | ||
2 + √3 = | , co łatwo sprawdzić usuwając niewymierność. | |
| 2 −√3 |
| 1 | ||
a + | = 2 + √3 + 2 − √3 = 4 | |
| a |
| 1 | 1 | ||
= | = 7 − √3, | ||
| a2 | 7 + 4√3 |
| 1 | ||
a2 + | = 14. | |
| a2 |