proszę o sprawdzenie i skończenie rozwiązania:
| π | π | |||
m) I arc cos x − | I < | |||
| 2 | 6 |
| π | π | |||
I. arc cos x − | ≥0 v II. arc cos x − | <0 | ||
| 2 | 2 |
| π | π | π | ||||
arc cos x < | + | arc cos x< | ||||
| 6 | 2 | 3 |
| 2π | ||
arc cos x< | arc cos x<arc cos 0,5 | |
| 3 |
| 2π | ||
arc cos x<arc cos (π− | ) | |
| 3 |
| π | ||
x< | ||
| 3 |

| π | π | |||
|arccosx − | | < | |||
| 2 | 6 |
| π | π | π | π | |||||
arccosx − | < | ∧ arccosx − | > − | |||||
| 2 | 6 | 2 | 6 |
| π | π | π | π | |||||
arccosx < | + | ∧ arccosx > | − | |||||
| 2 | 6 | 2 | 6 |
| π | π | π | π | |||||
arccosx = | + | ⇔ cos( | + | ) = x | ||||
| 2 | 6 | 2 | 6 |
| π | π | π | π | |||||
arccosx = | − | ⇔ cos( | − | ) = x | ||||
| 2 | 6 | 2 | 6 |
| π | π | π | 1 | |||||
cos( | + | ) = −sin( | ) = − | |||||
| 2 | 6 | 6 | 2 |
| π | π | π | 1 | |||||
cos( | − | ) = sin( | ) = | |||||
| 2 | 6 | 6 | 2 |
| −1 | 1 | |||
na rysunku: p = −1, q = | , r = | |||
| 2 | 2 |
| −1 | 1 | |||
więc Twoją odp. są x∊( | ; | ) | ||
| 2 | 2 |