| V | ||
V = Pp*h = π r2*h ⇒ h = | ||
| π r2 |
| V | ||
Pc = 2Pp + Pb = 2 π r2 + 2πr*h = 2π r2 + 2πr* | ||
| π r2 |
| 2V | ||
Pc(r) = 2π r2 + | ||
| r |
| 2V | V | |||
Pc'(r) = 4π r − | = 0 ⇔ π r3 = V ⇔ r = 3√ | |||
| r2 | π |
| 4 V | ||
Pc''(r) = 4π + | ||
| r3 |
| V | ||
Pc ''( 3√ | ) = 4π + 4π = 8 π > 0 | |
| π |
| V | ||
zatem dla r = 3√ | funkcja Pc osiąga minimum. | |
| π |
| V | ||
Odp. r = 3√ | ||
| π |