V | ||
V = Pp*h = π r2*h ⇒ h = | ||
π r2 |
V | ||
Pc = 2Pp + Pb = 2 π r2 + 2πr*h = 2π r2 + 2πr* | ||
π r2 |
2V | ||
Pc(r) = 2π r2 + | ||
r |
2V | V | |||
Pc'(r) = 4π r − | = 0 ⇔ π r3 = V ⇔ r = 3√ | |||
r2 | π |
4 V | ||
Pc''(r) = 4π + | ||
r3 |
V | ||
Pc ''( 3√ | ) = 4π + 4π = 8 π > 0 | |
π |
V | ||
zatem dla r = 3√ | funkcja Pc osiąga minimum. | |
π |
V | ||
Odp. r = 3√ | ||
π |