prawdopodobienstwo warunkowe
Mart: Rzucamy trzy razy sześcienną, symetryczną kostką do gry. Jakie jest prawdopodobieństwo, że
wypadnie co najmniej raz 5 oczek, jeśli wiadomo, że za każdym razem wypadła inna liczba oczek
11 kwi 17:15
M: Może ktoś rozwiązać
?
16 kwi 20:13
Jacek:
Liczba wariacji trzy−wyrazowych o dowolnej dopuszczalnej liczbie oczek − |Ω|:
6
3
Liczba wariacji trzy−wyrazowych o różnej liczbie oczek − |A|:
6*5*4
Liczba wariacji trzy−wyrazowych o różnej liczbie oczek, ale zawierających co najmniej jedną 5 −
|A∩B|, gdzie B to wylosowanie co najmniej jednej 5:
− dokładnie jedną 5:
− dokładnie dwie 5:
− dokładnie trzy 5:
1−na wariacja
Prawdopodobieństwo, że wypadnie co najmniej raz 5 oczek, jeśli wiadomo, że za każdym razem
wypadła inna liczba oczek, wynosi:
16 kwi 23:02
Matma: Dziękuję!
17 kwi 13:40
Jacek: Korekta. Tylko 3*5*4, pozostałych nie uwzględniamy.
17 kwi 18:08