matematykaszkolna.pl
Funkcja liniowa Pieseł: Wyznacz wzór funkcji liniowej f, jeśli f(1) = 3, a wartości ujemne funkcja przyjmuje tylko dla argumentów mniejszych od −3.
3 kwi 00:44
Qulka: rysuneky=3(x−1)/4+3
3 kwi 00:51
Pieseł: Uszanowanko.
3 kwi 02:08
Pieseł: A jak do tego doszłaś?
3 kwi 02:13
J: funkcja ma postać: y = ax + b f(1) = 3 , zatem: 3 = a*1 + b f(−3) =0 , zatem: 0 = a(−3) + b
 3 9 
z tego układu równań dostajemy: a =

i b =

 4 4 
 3 9 
szukana prosta: y =

x +

 4 4 
3 kwi 08:54
Mikołaj: Do wyznaczenia funkcji liniowej potrzebujemy co najmniej dwóch punktów. z treści zadania: f(1) = 3 czyli dla x=1 => y=3 a wartości ujemne czyli y<0 są przyjmowane dla x<−3, więc pojawia się tutaj punkt charakterystyczny (miejsce zerowe funkcji) => y=0 to x=−3 Tworzymy układ równań: Wzór ogólny funkcji liniowej to y=ax+b, więc: a,b współczynniki których szukamy. {0=−3a+b {3=a+b ten układ równań rozwiązujesz a=3/4 b=9/4 podstawiam do wzoru funkcji: y=(3/4)x + 9/4 czyli łatwiej f(x)=0,75x+2,25
3 kwi 09:00
Pieseł: Uszanowanko bardzo!
4 kwi 10:26