a2 | ||
(1) k2= | ||
2−2cosα |
a√2 | ||
W ΔSOC: |OC|= | ||
2 |
12a√2 | ||
cosα= | ⇔ | |
k |
a√2 | ||
k= | ||
2cosα |
a2 | ||
(2) k2= | ||
2cos2α |
a2 | a2 | ||
= | ⇔ | ||
2−2cosα | 2cos2α |
−1−√5 | −1+√5 | |||
t= | ∉D lub t= | |||
2 | 2 |
−1+√5 | ||
cosα= | ||
2 |
a√2 | ||
k= | ||
√5−1 |
a√2 | ||
H2=k2−( | )2 | |
2 |
2a2 | 2a | |||
czyli H=√ | − | |||
1+√5 | 4 |
1 | ||
więc pole to | &a2*P{8a2−2a−2a√5}{4+4√5} | |
3 |
1 | 8a2−2a−2a√5 | ||
*a2*√ | |||
3 | 4+4√5 |
a√2 | 2a2 | |||
H2=( | )2− | |||
(√5−1) | 4 |
2a2 | a2 | |||
H2= | − | |||
5−2√5+1 | 2 |
2 | 1 | |||
H2=a2*( | − | ) | ||
6−2√5 | 2 |
2 | 1 | |||
H2=a2*( | − | ) | ||
2*(3−√5) | 2 |
2−3+√5 | ||
H2=a2* | ||
2*(3−√5) |
√5−1 | ||
H2=a2* | ||
2*(3−√5) |
(√5−1)*(3+√5) | ||
H2=a2* | ||
2*(9−5) |
√5+1 | ||
H2=a2* | ||
4 |
a√√5+1 | ||
H= | ||
2 |
1 | a√√5+1 | |||
V= | *a2* | |||
3 | 2 |
a3*√√5+1 | ||
V= | ||
6 |