W ΔBCS:
a2=k2+k2−2k*k cosα
a2=2k2−2k2 *cosα
a2=k2*(2−2cosα)
| a2 | ||
(1) k2= | ||
| 2−2cosα |
| a√2 | ||
W ΔSOC: |OC|= | ||
| 2 |
| 12a√2 | ||
cosα= | ⇔ | |
| k |
| a√2 | ||
k= | ||
| 2cosα |
| a2 | ||
(2) k2= | ||
| 2cos2α |
| a2 | a2 | ||
= | ⇔ | ||
| 2−2cosα | 2cos2α |
| −1−√5 | −1+√5 | |||
t= | ∉D lub t= | |||
| 2 | 2 |
| −1+√5 | ||
cosα= | ||
| 2 |
| a√2 | ||
k= | ||
| √5−1 |
| a√2 | ||
H2=k2−( | )2 | |
| 2 |
| 2a2 | 2a | |||
czyli H=√ | − | |||
| 1+√5 | 4 |
| 1 | ||
więc pole to | &a2*P{8a2−2a−2a√5}{4+4√5} | |
| 3 |
| 1 | 8a2−2a−2a√5 | ||
*a2*√ | |||
| 3 | 4+4√5 |
| a√2 | 2a2 | |||
H2=( | )2− | |||
| (√5−1) | 4 |
| 2a2 | a2 | |||
H2= | − | |||
| 5−2√5+1 | 2 |
| 2 | 1 | |||
H2=a2*( | − | ) | ||
| 6−2√5 | 2 |
| 2 | 1 | |||
H2=a2*( | − | ) | ||
| 2*(3−√5) | 2 |
| 2−3+√5 | ||
H2=a2* | ||
| 2*(3−√5) |
| √5−1 | ||
H2=a2* | ||
| 2*(3−√5) |
| (√5−1)*(3+√5) | ||
H2=a2* | ||
| 2*(9−5) |
| √5+1 | ||
H2=a2* | ||
| 4 |
| a√√5+1 | ||
H= | ||
| 2 |
| 1 | a√√5+1 | |||
V= | *a2* | |||
| 3 | 2 |
| a3*√√5+1 | ||
V= | ||
| 6 |