Na bokach BC, CA i AB trójkata ABC wybrano punkty K, L,M takie, że
| BK | CL | AM | |||
= | = | = k,gdzie k∊(0,+∞) | |||
| KC | LA | MB |
| AM | ||
= k | ||
| MB |
| AM | AM | AM | k*MB | ||||
= | = | = | = | ||||
| AB | AM + AB | AM + MB | k*MB + MB |
| k*MB | k | ||
= | |||
| MB(k+1) | k+1 |
| AL | 1 | |||
analogicznie z | = | |||
| AC | k+1 |
| 1 | 1 | k | 1 | |||||
PAML = | AM*ALsin∡A = | * | *AB* | ACsin∡A | ||||
| 2 | 2 | k+1 | k+1 |
| k | k | |||
PΔAML= 12AB*ACsinA* | = PΔABC* | |||
| (k+1)2 | (1+k)2 |
| k | ||
PΔAML=PΔBMK=PΔCKL= PΔABC* | , to | |
| (1+k)2 |
| k | ||
PΔKLM= PΔABC− 3PΔABC | / : PΔABC ⇒ | |
| (1+k)2 |
| PΔKLM | k | 3k | ||||
⇒ | = 1− 3 | = 1− | − | |||
| PΔABC | (1+k)2 | (1+k)2 |
| (1+k)2−3k | 1−k+k2 | |||
− szukany stosunek, a dalej = | = | i tyle . ... ![]() | ||
| (1+k)2 | (1+k)2 |