BK | CL | AM | |||
= | = | = k,gdzie k∊(0,+∞) | |||
KC | LA | MB |
AM | ||
= k | ||
MB |
AM | AM | AM | k*MB | ||||
= | = | = | = | ||||
AB | AM + AB | AM + MB | k*MB + MB |
k*MB | k | ||
= | |||
MB(k+1) | k+1 |
AL | 1 | |||
analogicznie z | = | |||
AC | k+1 |
1 | 1 | k | 1 | |||||
PAML = | AM*ALsin∡A = | * | *AB* | ACsin∡A | ||||
2 | 2 | k+1 | k+1 |
k | k | |||
PΔAML= 12AB*ACsinA* | = PΔABC* | |||
(k+1)2 | (1+k)2 |
k | ||
PΔAML=PΔBMK=PΔCKL= PΔABC* | , to | |
(1+k)2 |
k | ||
PΔKLM= PΔABC− 3PΔABC | / : PΔABC ⇒ | |
(1+k)2 |
PΔKLM | k | 3k | ||||
⇒ | = 1− 3 | = 1− | − | |||
PΔABC | (1+k)2 | (1+k)2 |
(1+k)2−3k | 1−k+k2 | |||
− szukany stosunek, a dalej = | = | i tyle . ... | ||
(1+k)2 | (1+k)2 |