Wykaż że - ciąg arytmetyczny
Loloollololool: Wykaż, że jeśli ciąg (an), n należy do N+, jest ciągiem arytmetycznym, to ciągi (bn) i (cn),
gdzie bn = a3n oraz cn= −0,5a2n−1, również są arytmetyczne.
29 mar 18:44
vaultboy: an=a1+r(n−1) ⇒ bn=a3n=a1+r(3n−1)=(a1−r)+3rn=(a1+2r)+(3r)(n−1) wyraz poczatkowy
b1=a1+2r i różnica wynosi 3r
cn=−1/2[a1+r(2n−2)]=−1/2[(a1−2r)+(2r)n]=(−a1/2+r)−rn=−a1/2−r(n−1) wyraz poczatkowy
c1=−a1/2 i różnica wynosi −r
29 mar 18:54
skkskssk:
13 maj 19:59
lolllolol:
15 maj 21:40
kutas:
17 paź 20:36
Wow: π∞ββ→
4 lut 01:32
Iluminati: Δ pomoże na wszystko
4 lut 01:34