x | 1 | |||
(a√2)2=x2+x2−2x2cosβ ⇒ | = | |||
a | √1−cosβ |
x | hs | hs | ||||
Zauważ trójkąty podobne i zależność | = | = | ||||
a | k | √hs2+a2/4 |
1 | 2hs | |||
= | ||||
√1−cosβ | √4hs2+a2 |
a2 | ||
4hs2+a2=4hs2−4hs2cosβ ⇒ a2=−4hs2cosβ hs=√ | ||
−4cosβ |
a | a | ||||||||||||
cosα= | = | =√−cosβ | |||||||||||
2hs |
|
12a | ||
cosα= | ||
h |
a2 | a | |||
w2= | ⇔w= | |||
1−cosβ | √1−cosβ |
a2 | ||
x2=a2− | ||
1−cosβ |
a2*(−cosβ | ||
x2= | ||
(1−cosβ) |
a√−cosβ | ||
x= | , β− kat rozwarty | |
√1−cosβ |
x | a√−cosβ | √1−cosβ | ||||
ctgδ= | = | * | ||||
w | √1−cosβ | a |
12a | ||
ctgδ= | =cosα=√−cosβ | |
h |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |