| a | b | a2+b2 | b2 | |||||
Wykaż, że jeśli a,b,c ∊ R − {0} i | = | , to | = | |||||
| b | c | b2+c2 | c2 |
| b2 | ||
Próbowałem wyznaczyć z pierwszego a = | i podstawić pod lewą stronę równania w tezie, | |
| c |
| a2+ac | a(a+c) | a | c | ac | b2 | |||||||
L= | = | = | * | = | = | = P | ||||||
| ac+c2 | c(a+c) | c | c | c2 | c2 |
| a | b | a2 | b2 | a2 | b2 | ||||||
= | ⇒ | = | /+1 ⇔ | +1= | +1 ⇔ | ||||||
| b | c | b2 | c2 | b2 | c2 |
| a2+b2 | b2+c2 | a2+b2 | b2 | |||||
⇔ | = | ⇔ | = | c.n.w. ![]() | ||||
| b2 | c2 | b2+c2 | c2 |