pochodne cząstkowe i rachunek różniczkowy
Lukas:
F(x,y,z)=zxy
F'x=(exylnz)'
F'y=(exylnz)'
F'z=(exylnz)'
ok ?
24 mar 01:30
Qulka: ok.. a dalej?
24 mar 01:35
Lukas:
dalej wiem jak policzyć chodziło mi o to czy trzeba tylko sprowadzić do tego zapisu
24 mar 01:36
Lukas:
F(x,y)=(4x+8y)4x+8y⇔F(x,y)=e(4x+8y)ln(4x+8y) ?
24 mar 01:38
Lukas: ?
24 mar 01:43
Dziadek Mróz:
F(x, y, z) = z
xy
F(x, y, z) = z
u u = xy
d | | d | | d | | d | |
| [F(x, y, z)] = |
| [zu] = |
| [euln(z)] = euln(z) * |
| [uln(z)] = |
dx | | dx | | dx | | dx | |
| d | |
= euln(z) * ln(z) |
| [u] = *) |
| dx | |
d | | d | | d | |
| [u] = |
| [xy] = y |
| [x] = y |
dx | | dx | | dx | |
*) = yln(z)e
xyln(z)
d | | d | | d | | d | |
| [F(x, y, z)] = |
| [zu] = |
| [euln(z)] = euln(z) * |
| [uln(z)] = |
dy | | dy | | dy | | dy | |
| d | |
= euln(z) * ln(z) |
| [u] = **) |
| dy | |
d | | d | | d | |
| [u] = |
| [xy] = x |
| [y] = x |
dy | | dy | | dx | |
**) = xln(z)e
xyln(z)
d | | d | | d | | d | |
| [F(x, y, z)] = |
| [zu] = |
| [euln(z)] = euln(z) * |
| [uln(z)] = |
dz | | dz | | dz | | dz | |
| d | | u | | xy | |
= euln(z) * u |
| [ln(z)] = euln(z) * |
| = |
| exyln(z) |
| dz | | z | | z | |
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
d | |
| [F(x, y, z)] = yln(z)exyln(z) |
dx | |
d | |
| [F(x, y, z)] = xln(z)exyln(z) |
dy | |
d | | xy | |
| [F(x, y, z)] = |
| exyln(z) |
dz | | z | |
24 mar 10:54
J:
24 mar 10:56
J:
To było do postu 1:38
24 mar 10:57
Lukas:
Dziadek ja wiem jak policzyć. Mi chodziło tylko czy ten zapis jest równoważny
24 mar 14:52
J:
zapisy masz dobre
24 mar 14:55
Lukas:
Dzięki J
Masz jeszcze czas bo trochę mam zadań do sprawdzenia.
24 mar 14:57
J:
wrzucaj
24 mar 14:59
Lukas:
Chwilkę
24 mar 15:04