matematykaszkolna.pl
stereometria SiA: rysunekBardzo proszę o pomoc w tym zadaniu . w ostrosłupie prawidłowym czworokątnym wszystkie krawędzie mają jednakową długość równą 20. Ostrosłup przecięto płaszczyzną przechodzącą przez środki krawędzi wychodzących z jednego wierzchołka przy podstawie. Oblicz a)pole otrzymanego przekroju b)odległość tej płaszczyzny od punktu wspólnego tych krawędzi Odpowiedź: a) 50, b) 52 Przekrój jest trójkątem z tw. o linii łączącej środki boków w trójkącie wyliczyłam że że boki x=10 ( bo będą one 2 razy mniejsze od boku trójkąta równego 20. Następnie bok przekroju y wyliczyłam z tw. Pitagorasa y2=102+102⇒y=102 A więc pole tego przekroju obliczyłam ze wzoru Herona i wyszło mi 50 tylko teraz kompletnie nie wiem jak zrobić podpunkt b. Bardzo proszę o jakąkolwiek pomoc emotka
22 mar 12:49
SiA: okey już nie trzeba sama zrobiłam
22 mar 13:09
SiA: rysunektylko nie wiem czy dobrze to wyliczyłam bo założyłam że ta odległość to d w narysowanym trójkącie h to wysokość przekroju którą można wyliczyć z tw. Pitagorasa wynosi ona 52 a więc następnie korzystamy z Tw. Pitagorasa i d wychodzi nam że się róna 52 ale kompletnie nie wiem czy dobrze wyznaczyłam tą odległlość
22 mar 13:22