pochodne
dizz: Obliczyć pochodne I i II rzędu po x i y
f(x,y)=e−(x2+y2+2x)
19 mar 14:31
J:
f'x = e−(x2+y2+2x)(−2x + 2)
f'y} −= e−(x2+y2+2x)(−2y)
19 mar 14:35
J:
f'−X .. w nawiasie ma być: ( −2x −2)
19 mar 14:37
Dziadek Mróz:
f(x, y) = e
−(x2 + y2 + 2x)
f(x, y) = e
u u = −v v = x
2 + y
2 + 2x
d | | d | | d | |
| [f(x, y)] = |
| [eu] = eu * |
| [u] = *) |
dx | | dx | | dx | |
d | | d | | d | |
| [u] = |
| [−v] = − |
| [v] = **) |
dx | | dx | | dx | |
d | | d | | d | | d | | d | |
| [v] = |
| [x2 + y2 + 2x] = |
| [x2] + |
| [y2] + |
| [2x] = |
dx | | dx | | dx | | dx | | dx | |
| d | |
= 2x + y2 |
| [1] + 2 = 2x + 2 = 2(x + 1) |
| dx | |
**) = −(2(x + 1)) = −2(x + 1)
*) = e
−(x2 + y2 + 2x) * (−2(x + 1)) = −2(x + 1)e
−(x2 + y2 + 2x)
d | | d | | d | |
| [f(x, y)] = |
| [eu] = eu * |
| [u] = *) |
dy | | dy | | dy | |
d | | d | | d | |
| [u] = |
| [−v] = − |
| [v] = **) |
dy | | dy | | dy | |
d | | d | | d | | d | | d | |
| [v] = |
| [x2 + y2 + 2x] = |
| [x2] + |
| [y2] + |
| [2x] = |
dy | | dy | | dy | | dy | | dy | |
| d | | d | |
= x2 |
| [1] + 2y + 2x |
| [1] = 2y |
| dy | | dy | |
**) = −2y
*) = e
−(x2 + y2 + 2x) * (−2y) = −2ye
−(x2 + y2 + 2x)
19 mar 14:44
Dziadek Mróz:
A resztę sam
19 mar 14:47
dizz: dzięki wielkie
teraz już z górki
19 mar 14:52