| |−ax+y+5a| | |
=2 | |
| √a2+1 |
| |5a| | |
=2 / √a2+1 | |
| √a2+1 |
| 2√21 | 2√21 | |||
a1= | lub a2=− | |||
| 21 | 21 |
| 2√21 | 10√21 | |||
y1= | − | |||
| 21 | 21 |
| 2√21 | 10√21 | |||
y2=− | + | |||
| 21 | 21 |
| 2 | ||
tgβ= | ||
| √21 |
| 2tgβ | ||
tgα=tg2β= | ||
| 1−tg2β |
y = a x + b A = ( 5, 0)
więc
0 = 5 a + b ⇒ b = − 5 a
y = a x − 5 a = a*( x − 5)
x2 + y2 = 4
−−−−−−−−−−−−
x2 + a2*( x − 5)2 = 4
x2 + a2( x2 − 10 x + 25) − 4 = 0
x2 + a2 x2 − 10a2 x + 25 a2 − 4 = 0
( 1 + a2) x2 − 10 a2 x + 25a2 − 4 = 0
Δ = 100 a4 − 4*( 1 + a2)*( 25 a2 − 4) = 100a4 − 4*(25a2 − 4 + 25 a4 − 4 a2) =
| 4 | ||
= 100a4 − 100a4 − 84 a2 + 16 = − 84 a2 + 16 = 0 ⇔ a2 = | ||
| 21 |
| 2 | 2 | |||
a1 = | a2 = − | |||
| √21 | √21 |
| a1 − a2 | 4 √21 | |||
tg α = I | I = | |||
| 1 + a1*a2 | 17 |
|OA|=5 , |OB|=2
| α | 2 | α | 4 | √21 | ||||||
sin | = | , to cos | = p{1− | = | ||||||
| 2 | 5 | 2 | 25 | 5 |
| α | α | 4√21 | ||||
2sin | *cos | = sinα= | ||||
| 2 | 2 | 5 |
| 17 | ||
cosα= √1−sin2α= | ||
| 25 |
| 4√21 | ||
to tgα= ........= | ||
| 17 |
| α | 4 | √21 | ||||
Poprawiam zapis : cos | =√1− | = | ||||
| 2 | 25 | 5 |
!
Oby więcej takich rozwiązań,
a nie klepanie schematów
| 4√21 | ||
sinα= | ||
| 25 |