przy n−>∞
| 7n | ||
lim | ||
| n! |
| an+1 |
| ||||||||||||
lim n→∞ | = lim n→∞ | = | |||||||||||
| an |
|
| 7*7n | n! | 7 | ||||
= lim n→∞ | * | = lim n→∞ | = 0 <1, to | |||
| n!(n+1) | 7n | n+1 |
| an+1 | ||
lim n→∞ | = q < 1 ⇒ lim n→∞an = 0 | |
| an |
| 72 | ||
masz tu : lim n→∞an = lim n→∞ | = 0 − szukana granica ... ![]() | |
| n! |
| an+1 | ||
|| | |−q|≤ε dla n≥no. Dalej biorąc dowolne n≥no mamy: | |
| an |
| an+1 | an+1 | |||
|| | |−q|≥ε⇔q−ε≤| | |≤q+ε⇒|an+1|≤|an|(q+ε) | ||
| an | an |
| |ano| | ||
|an|≤ | (q+ε)n dla n>no | |
| (q+ε)no |
| 72 | 7n | |||
czemu na końcu jest | = 0 gdy an = | ![]() | ||
| n! | n! |