| y | 12 | |||
tg α = | = 2,4 = | , więc y = 12 i x = 5 | ||
| x | 5 |
| y | 12 | |||
sin α = | = | |||
| r | 13 |
| x | 5 | |||
cos α = | = | |||
| r | 13 |

| 17 | ||
czyli w pkt a wyjdzie | ![]() | |
| 13 |
| sinα | |
=2,4 i sin2α+cos2α=1 | |
| cosα |
| sin2α | 12 | ||
=( | )2 i cos2α=1−sin2α | ||
| cos2α | 5 |
| sin2α | 144 | ||
= | ⇔ 25sin2α=144−144sin2α | ||
| 1−sin2α | 25 |
| 144 | ||
sin2α= | ||
| 169 |
| 12 | 12 | |||
sinα= | lub sinα=− | |||
| 13 | 13 |
| 12 | 5 | 5 | ||||
1. sinα= | i cosα= | sinα= | ||||
| 13 | 12 | 13 |
| 17 | ||
stąd sinα+cosα= | ||
| 13 |
| 12 | 5 | 5 | ||||
2. sinα=− | i cosα= | sinα=− | ||||
| 13 | 12 | 13 |
| 17 | ||
stąd sinα+cosα=− | ||
| 13 |
| 12 | 5 | 7 | ||||
b) sinα−cosα= | − | = | ||||
| 13 | 13 | 13 |
| 12 | 5 | 7 | ||||
lub sinα−cosα=− | + | = − | ||||
| 13 | 13 | 13 |