a | 1 | 1 | ||||
Wyznacz parametr a, jeśli wiadomo, że: lim ( | − | )= | ||||
1−x | x2−1 | 4 |
−a(x+1) − 1 | −ax −a −1 | −a | ||||
= lim | = lim | = [H] = | ||||
x2−1 | x2−1 | 2x |
−a | 1 | 1 | |||
= | ⇔ a = = | ||||
2x | 4 | 2 |
1 | ||
a = − | ||
2 |
a | 1 | a | 1 | a | 1 | a(1+x)+1 | |||||||
− | = | + | = | + | = | ||||||||
1−x | x2−1 | 1−x | 1−x2 | 1−x | (1−x)(1+x) | (1−x)(1+x) |
a+ax+1 | ax−a+1+2a | −a(1−x)+1+2a | ||||
= | = | = | ||||
(1−x)(1+x) | (1−x)(1+x) | (1−x)(1+x) |
−a | 1+2a | |||
= | + | |||
(1+x) | (1−x)(1+x) |
1 | ||
i widać, ze jeżeli a=− | to 1+2a=0 | |
2 |
−a | 1 | |||
oraz limx→1 | = | |||
(1+x) | 4 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |