4π | m | |||
Wyznacz te wartości parametru m dla których równanie cos2x + cos(2x + | ) = | |||
3 | 10−m |
1 | 1 | |||
cos 2400 = cos (1800 + 600) = − | = | =
| ||
2 | 2 |
√3 | ||
sin(1800+602) = − | ||
2 |
4π | 4π | 4π | ||||
cos2x + cos(2x + | ) = cos2x + cos2xcos | − sin2xsin | =
| |||
3 | 3 | 3 |
1 | √3 | 1 | √3 | |||||
cos2x(1− | ) + | sin2x = | cos2x + | sin2x
| ||||
2 | 2 | 2 | 2 |
2 | 2 | |||
L= 2cos(2x+ | π)*cos | π | ||
3 | 3 |
2π | π | π | 1 | |||||
cos | = cos(π− | )= −cos | = − | |||||
3 | 3 | 3 | 2 |
2 | m | |||
cos(2x+ | π)= | ( po zmianie znaków | ||
3 | m−1 |
m | ||
−1≤ | ≤1 i m≠10 | |
m−1 |
m | ||
oczywiście ma być: | ||
m−10 |
m | |
−1 ≤ 0 ⇒ 10(m−10) ≤ 0 ⇒ m ≤ 10 ⇒ m ∊ ( − ∞ , 10 >
| |
m−10 |
m | ||
i | +1 ≥ 0 ⇒ (2m − 10)(m − 10 ≥ 0 ⇒ m ∊ ( − ∞ ,5 > ∪< 10, +∞ )
| |
m−10 |